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Abstract
The study of mixed-state quantum correlations in terms of opposite-subsystem
observables—the measurement of one of which amounts to the same as that of
the other—of so-called twins is continued. Twin events that imply biorthogonal
mixing of states, called ‘strong twin events’, are studied. It is shown that for
each mixed state there exists a Schmidt (super-state-vector) decomposition in
terms of Hermitian operators, and that it can be the continuation of the above-
mentioned biorthogonal mixing due to strong twins. The case of weak twins
and non-Hermitian Schmidt decomposition is also investigated. For separable
states a necessary and sufficient condition for the existence of nontrivial twins
is derived. Utilization of the Hermitian Schmidt decomposition for finding all
twins is illustrated in full detail for the case of the two spin-half-particle states
with maximally disordered subsystems (mixtures of Bell states). It is shown
that only rank-two mixtures have nontrivial twins.

PACS numbers: 3.65.Ta, 03.67.-a, 03.67.Hk

1. Introduction

Nowadays one distinguishes sharply between separable bipartite mixtures, which are
quasiclassically correlated, and nonseparable ones, endowed with entanglement, a purely
quantum property. (A good example of the latter is the case of correlated pure states.) The term
‘quantum correlations’ is used in the generic sense, comprising both quasiclassical correlations
and entanglement.

It was claimed in a recent investigation [1] that the study of quantum correlations through
twin observables, or for short twins, is expected to be important for quantum communication
and quantum information theories because it is believed to reveal some basic properties
of the correlations. Twin observables are opposite-subsystem observables such that the
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(subsystem) measurement of one of them amounts ipso facto to a measurement also of the
other. Equivalently put, the subsystem measurement of a twin gives rise, on account of the
quantum correlations, to an orthogonal decomposition of the state of the opposite subsystem.

In bipartite mixed states it is easier to relate twins to quantum correlations than to
entanglement (though the latter is more important). A quantitative measure of the former
is what is called von Neumann’s mutual information:

C(ρ12) ≡ S(ρ12|ρ1 ⊗ ρ2) = S(ρ1) + S(ρ2) − S(ρ12)

expressed in terms of the so-called relative (or conditional) entropy, and, alternatively, in terms
of the von Neumann entropies of the reduced statistical operators ρi , i = 1, 2 (subsystem
states), and the von Neumann entropy of the statistical operator (bipartite state) ρ12 itself. I
denote it by ‘C’ because it was thus designated and called the ‘logarithmic correlation’ by
Lindblad [2]. He also made use of the classical discrete mutual information I (A,B|ρ12) of
two arbitrary opposite-subsystem observables A and B (with purely discrete spectra) which
were assumed to be simultaneously measured in a quantum state ρ12. Then, utilizing the
spectral forms and the ensuing probabilities,

A =
∑
k

akP
(k)
1 k �= k′ ⇒ ak �= ak′ B =

∑
l

blQ
(l)
2 l �= l′ ⇒ bl �= bl′

p(k, l) ≡ Tr[ρ12(P
(k)
1 ⊗ Q

(l)
2 )] pk ≡

∑
l

p(k, l) pl ≡
∑
k

p(k, l)

one defines the mutual information

H(A : B|ρ12) ≡ H(p(k, l)|pkpl) = H(pk) + H(pl) − H(p(k, l))

where H(pk), e.g., is the so-called Gibbs–Boltzmann–Shannon entropy H(pk) ≡
−∑k pk logpk , etc. Finally, Lindblad defined

I (A,B|ρ12) ≡ supH(A : B|ρ12)

where the supremum was taken over all possible choices of the observables.
Lindblad showed that

I (A,B|ρ12) � C(ρ12)

and

C(ρ12) > 0 ⇒ I (A,B|ρ12) > 0

are always valid.
Thus, in all correlated states, i.e., in states in which C(ρ12) > 0, or equivalently,

ρ12 �= ρ1 ⊗ ρ2, one can understand part of the quantum correlations in terms of simultaneous
subsystem measurements and their maximal mutual information.

Now, twins occupy a very special position among the subsystem observables, because if
A and B are twins, then

I (A,B|ρ12) = H(pk)

since H(pk) = H(pl) = H(p(k, l)) due to the relation p(k, l) = pkδl,f (k), where f (k) is a
fixed bijection of the values of k onto those of l. This is the case of perfect correlations, called
the ‘lossless and noiseless information channel’ in information theory.

The investigation of twins began with pure states [3, 4] ρ12 ≡ |�〉〈�|. Surprisingly, a
necessary and sufficient condition for a subsystem observable A to have a nontrivial twin was
found in terms of properties of ρ1 alone (local properties; cf (2a)). The opposite-subsystem
observable B that is the twin of A was, naturally, expressed in terms of global properties of
|�〉. These were in a simple way given in terms of an operator (called the correlation operator;
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cf (11)) mapping the range of ρ1 onto that of ρ2. It was defined by |�〉. This operator is most
practically handled in terms of the so-called Schmidt decomposition [5] because it is precisely
the (antiunitary) operator determining which characteristic vector of ρ2 should appear in the
same term as that of ρ1 in the above-mentioned decomposition [3] (cf (11)).

When twins were investigated in the mixed-state case [1], the above-mentioned condition
(cf (2a)) was found to be only necessary. In fact, a sufficient condition for A to have a twin
expressed as a property of ρ1 alone (a local property) cannot exist, because for every ρ1 there
is the uncorrelated state ρ12 ≡ ρ1 ⊗ ρ2, which does not have nontrivial twins.

Thus, global properties inherent in ρ12 have to be made use of at the above-mentioned
very first stage of investigation of twins in the mixed-state case. It is not easy to ‘extract’ a
minimal global property of ρ12 that ‘does the job’ (as in the pure-state case).

It is a striking fact that the Schmidt decomposition of state vectors can be generalized to all
mixed states. It is the basic aim of this paper to investigate the relevance of this decomposition
to twins. It is proved that the Schmidt decomposition of any bipartite mixed state ρ12 need
not be expressed in terms of some very general linear operators; it can be given exclusively in
terms of Hermitian operators, which can, in principle, be physically interpreted as observables
(cf theorem 2 and corollary 1).

The concept of strong twins, which are closely connected with biorthogonal decomposition
of ρ12 (cf theorem 1), is introduced as a step towards the above-mentioned Hermitian Schmidt
decomposition of ρ12. Also non-Hermitian Schmidt decomposition of mixed states is studied
(cf theorem 3).

For mixtures of Bell states a Hermitian Schmidt decomposition is given in the literature
(though not treated as such). In this simple example the problem of finding all twins is easily
solved (cf theorems 5 and 6)—in order to illustrate the relevance of the Hermitian Schmidt
decomposition to extracting the sought-for global property inherent in ρ12.

In the above-mentioned simple case it turns out that rank-four mixtures do not allow
nontrivial twins. This is not surprising because it was shown in the preceding study [1] that
singularity of ρ12 is a necessary condition. But, surprisingly, rank-three mixtures are shown
to also have no nontrivial twins. This suggests that perhaps a stronger necessary condition,
some kind of ‘sufficient singularity’, for the existence of nontrivial twins could be found in
the general case. This will be followed up elsewhere.

Relating twins to separability is fully clarified in this study in terms of a necessary and
sufficient condition for the existence of nontrivial twins (cf theorem 4). Relating twins to
entanglement in the mixed-state case, and to the quantitative measures of entanglement like
the so-called entanglement of creation and entanglement of distillation [6], or the quantum
relative entropy [7] and others is an important open question that will be, we hope, treated in
further work.

The study of twins pursued in a number of articles mentioned above is an ab ovo approach,
which has already proved to be, in principle, relevant and perhaps even important to quantum
information theory. It stands somewhat apart from the mainstream investigations. But it will
be, we hope, connected up with the latter as a result of further exploration.

2. Preliminary relations

When a general, i.e., mixed or pure, bipartite state (statistical operator) ρ12 is given, twins
(A1, A2) are algebraically defined as Hermitian (opposite-subsystem) operators satisfying

A1ρ12 = A2ρ12 (1)
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where A1 is actually (A1 ⊗ I2), I2 being the identity operator for the second subsystem, etc.
It has been shown [1] that (1) implies

[A1, ρ1] = 0 (2a)

[A2, ρ2] = 0 (2b)

for the subsystem states (the reduced statistical operators) ρ1 ≡ Tr2 ρ12, ρ2 ≡ Tr1 ρ12.
(The symbols Tri , i = 1, 2, denote the partial traces.) Relation (2a) is the above-mentioned
local necessary condition for A1 to have a twin.

If P1 is a first-subsystem projector, one can decompose the statistical operator:

ρ12 = P1ρ12 + P⊥
1 ρ12 (3)

where P⊥
1 is the orthocomplementary projector of P1. Let (P1, P2) be a pair of nontrivial twin

events (twin projectors) for ρ12. In general, the terms on the RHS are not even Hermitian.
First, we are going to investigate the more important case where (3) is a mixture of states.

3. Strong twin projectors and biorthogonal mixtures

Let (P1, P2) be a pair of nontrivial twin projectors for a composite-system statistical operator
ρ12.

Remark 1. Evidently, either both terms on the RHS of (3) are Hermitian or neither of them is.
They are Hermitian if and only if the projector P1 (or equivalently, P⊥

1 ) commutes with ρ12:

[Pi, ρ12] = 0 i = 1, 2 (4)

(any one of the equalities implies the other), as seen by adjoining the terms in (3).
Hermiticity of the terms in (3) implies that they are statistical operators (up to normalization

constants), i.e., that (3) is a mixture. That is, if (4) is valid, then idempotency leads to
P1ρ12 = P1ρ12P1, which is evidently a positive operator. Since

Tr P1ρ12P1 � Tr ρ12 = 1

the operator has a finite trace.

Definition 1. Nontrivial twin events (projectors) we call either strong twin events (projectors),
if they satisfy (4), or weak twin events (projectors), if (4) is not satisfied.

A strong twin event P1 implies a mixture (3) of states that have a strong property called
biorthogonality. To understand it, we first recall the (ordinary) orthogonality of states.

If ρ ′ and ρ ′′ are statistical operators with Q′ and Q′′ as their respective range projectors,
then one has the known equivalences

ρ ′ρ ′′ = 0 ⇔ Q′Q′′ = 0 ⇔ R(ρ ′) ⊥ R(ρ ′′) (5)

where the last relation expresses the orthogonality of the ranges.
Any of the three relations in (5) defines the orthogonality of states.

Definition 2. If

ρ12 = wρ ′
12 + (1 − w)ρ ′′

12 0 < w < 1 (6)

is a mixture of states such that

ρ ′
iρ

′′
i = 0 i = 1, 2 (7)

where ρ ′
1 ≡ Tr2 ρ

′
12 etc are the reduced statistical operators, then we say that (6) is a

biorthogonal mixture.
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To prove a close connection between strong twin events and biorthogonal mixtures, we
need another known general property of composite-system statistical operators ρ12:

ρ12 = Q1ρ12 = ρ12Q1 = Q2ρ12 = ρ12Q2 (8)

where Qi is the range projector of the corresponding reduced statistical operator ρi , i = 1, 2.

Theorem 1. If P1 is a nontrivial twin event, expression (3) is a biorthogonal mixture if and
only if P1 is a strong twin event.

Proof. Sufficiency. If P1 is a strong twin projector and (6) is obtained by rewriting (3), then
ρ ′

12 = P1ρ
′
12 is valid, and this implies ρ ′

1 = P1ρ
′
1 for the reduced statistical operator, and,

adjoining this, one arrives at ρ ′
1 = ρ ′

1P1. On the other hand, one has analogously ρ ′′
12 = P⊥

1 ρ ′′
12

implying ρ ′′
1 = P⊥

1 ρ ′′
1 . Finally,

ρ ′
1ρ

′′
1 = (ρ ′

1P1)(P
⊥
1 ρ ′′

1 ) = 0.

The symmetrical argument holds for the second tensor factor.
Necessity. If (6) is a biorthogonal mixture, then we define Pi ≡ Q′

i , i = 1, 2, i.e., we
take the range projectors of the reduced statistical operators of ρ ′

12 as candidates for our twin
projectors. On account of (8), we can write (6) as follows:

ρ12 = wQ′
1Q

′
2ρ

′
12Q

′
1Q

′
2 + (1 − w)Q′′

1Q
′′
2ρ

′′
12Q

′′
1Q

′′
2.

Since, in view of (5), biorthogonality (7) implies Q′
iQ

′′
i = 0, i = 1, 2, it is now obvious that

P1 and P2, multiplying ρ12 from the left, give one and the same operator, i.e., that they are
twins, and it is also obvious that they both give the same operator irrespective of whether they
multiply ρ12 from the left or from the right, i.e., that they are strong twin projectors. �

In view of (5), it is clear that biorthogonal decomposition of a statistical operator can
be, in principle, continued: if, e.g., ρ ′

12 in the biorthogonal decomposition (6) is, in its turn,
decomposed into biorthogonal statistical operators and replaced in (6), then any two of the
new terms are biorthogonal, etc.

An extreme case of a biorthogonal mixture is a separable one:

ρ12 =
∑
k

wk(ρ
(k)
1 ⊗ ρ

(k)
2 ) (9)

where

∀k: wk > 0 ρ
(k)
i > 0 Tr ρ(k)i = 1 (i = 1, 2)

∑
k

wk = 1

(‘ρ > 0’ denotes positivity of the operator). This decomposition cannot, of course, always
be carried out, but examples are well known. For instance, if one performs ideal nonselective
measurement of the z-component of spin of the first particle in a singlet two-particle state, one
ends up with

ρ12 ≡ (1/2)(|z+〉1〈z+|1 ⊗ |z−〉2〈z−|2 + |z−〉1〈z−|1 ⊗ |z+〉2〈z+|2).
This is obviously a biorthogonal separable mixture.

One might wonder whether, at the price of relaxing the requirement of statistical operator
terms as slightly as possible, there could exist a general decomposition into uncorrelated terms
(like in (9)).

To find a definite answer to this, we consider the known case of general (entangled
or disentangled) composite-system state vectors and their Schmidt decompositions. Let us
summarize the relevant information on this in sufficient detail [3].
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The Schmidt decomposition of an arbitrary pure-state vector |�〉12 of a composite system
is expressed in terms of its canonical entities. They are the following:

(i) The reduced statistical operators (subsystem states) ρ1 (≡ Tr2 |�〉12〈�|12) and ρ2 (defined
symmetrically) are well known.

(ii) The spectral forms of the reduced statistical operators are

ρ1 =
∑
i

ri |i 〉1〈i |1 ∀i: ri > 0 (10a)

ρ2 =
∑
i

ri |i 〉2〈i |2 ∀i: ri > 0. (10b)

(Note that the positive spectra—multiplicities included—are always equal.)
(iii) Finally, the above-mentioned expansion utilizes the (antiunitary) correlation operator Ua ,

which maps the range R(ρ1) onto the range R(ρ2). (Note that they are always equally
dimensional in the pure-state case.) The correlation operator is determined by |�〉12, and,
in turn, in conjunction with ρ1, it determines |�〉12.

The Schmidt decomposition reads

|�〉12 =
∑
i

r
1/2
i |i 〉1 ⊗ (Ua|i 〉1)2. (11)

The normalized characteristic vectors | i 〉2 in (10b) may (but need not) be chosen to be equal
to (Ua|i 〉1)2.

In case of a state vector |�〉12, the characteristic relation (1) for twins reduces to

A1|�〉12 = A2|�〉12. (12)

The corresponding twin A2 then satisfies

A2 = UaA1U
−1
a Q2 + A2Q

⊥
2 (13)

where Q2 is the range projector of ρ2, and Q⊥
2 , its orthocomplementary projector, projects

onto the null space of ρ2.
One should note that, on account of the commutation (2b), both the range and the null space

of ρ2 are invariant for A2. Further, the second term on the RHS of (13), or rather the restriction
of A2 to the null space, which corresponds to it, is completely arbitrary and immaterial for the
twin property (12), because it acts as zero on |�〉12. (Naturally, the symmetric claim holds
true for A1 and ρ1.)

4. Hermitian Schmidt decomposition of bipartite statistical operators

It is well known that linear Hilbert–Schmidt operators A acting in a Hilbert space, i.e., those
with a finite Hilbert–Schmidt norm (TrA†A)1/2, form a Hilbert space in their turn. Writing
the operator A as a (Hilbert–Schmidt) super-vector |A〉, the scalar product is

〈A||B 〉 ≡ TrA†B.

Since for every statistical operator ρ, one has Tr ρ2 � 1, it is a Hilbert–Schmidt operator.
Therefore, every statistical operator has a Schmidt decomposition.

The trouble is that the operators that take the place of the state-vector tensor factors in
the terms of (11), which are the sought-for generalizations of the statistical operators ρ(k)i ,
i = 1, 2, in (9), are in general linear operators. This might be too wide a generalization. One
might wonder whether it could be confined to Hermitian operators.

When we view the operators as super-vectors, then we must view adjoining of operators
as an antiunitary operator whose square is the identity operator, i.e., which is an involution.
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Hence, we denote adjoining by V
(a)

1 ⊗ V
(a)

2 for a composite system. The operators that are
invariant under the action of this antiunitary involution are Hermitian.

Fortunately, the Schmidt decomposition can always be expressed in terms of Hermitian
operators. We put this in a more precise and a more detailed way. But it is simpler to return
to the Hilbert space of state vectors for some elaboration.

Theorem 2. Let V (a)
1 ⊗ V

(a)
2 be a given antiunitary involution acting on composite-system

state vectors. One has the equivalence

(V
(a)

1 ⊗ V
(a)

2 )|�〉12 = |�〉12 ⇔ [ρi, V
(a)
i ] = 0 (i = 1, 2) V

(a)
2 UaV

(a)
1 = Ua (14)

where ρi, Ua are the above-mentioned canonical entities of |�〉12. (Note that in the last relation
we actually have the restriction of V (a)

1 to R(ρ1).)

Proof. Let |�〉12 be invariant under the action of the antiunitary involution. Then

V
(a)

1 ρ1V
(a)

1 = V
(a)

1 (Tr2 |�〉12〈�|12)V
(a)

1

= Tr2(V
(a)

1 |�〉12〈�|12V
(a)

1 )

= Tr2{V (a)
1 [(V (a)

1 ⊗ V
(a)

2 )|�〉12〈�|12(V
(a)

1 ⊗ V
(a)

2 )]V (a)
1 }

= Tr2(V
(a)

2 |�〉12〈�|12V
(a)

2 ) = Tr2 |�〉12〈�|12 = ρ1

and symmetrically for ρ2. It should be noted that an antiunitary involution equals its inverse
and its adjoint. Further, use has been made of some known basic properties of partial traces
(which are analogous to the well known ones for ordinary traces).

Commutation of ρ1 with the antiunitary involution V
(a)

1 allows one to choose the
characteristic basis {|i 〉1 : ∀i} of the former spanning its range consisting of vectors invariant
under the action of V (a)

1 (cf [8]).
Now, let us take the Schmidt decomposition (11) in terms of such an invariant basis. Then

(V
(a)

1 ⊗ V
(a)

2 )|�〉12 =
∑
i

r
1/2
i |i 〉1 ⊗ V

(a)
2 (Ua|i 〉1)2.

Since |�〉12 is assumed to be invariant, it follows that also

|�〉12 =
∑
i

r
1/2
i |i 〉1 ⊗ V

(a)
2 (Ua|i 〉1)2.

The second tensor factor in each term is uniquely determined by the LHS and the corresponding
first tensor factor (as a partial scalar product; cf [3]). Comparison with (11) then shows that

∀i: V
(a)

2 Ua|i 〉1 = Ua|i 〉1.

Since |i 〉1 = V
(a)

1 |i 〉1, we further have

V
(a)

2 UaV
(a)

1 = Ua

as claimed.
Conversely, if the main canonical entities are in the relation to the antiunitary involutions

stated in (14), then we can expand |�〉12 in a characteristic basis in ρ1 spanning its range that is
invariant under the antilinear operator. Then (11) immediately reveals that, as a consequence,
|�〉12 is invariant under V (a)

1 ⊗ V
(a)

2 . �

Corollary 1. Every composite-system statistical operator ρ12 has, after super-vector
normalization, a Hermitian Schmidt decomposition.
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Proof. Since every ρ12, being Hermitian, is invariant under the antiunitary involution
V

(a)
1 ⊗ V

(a)
2 , it is clear from the proof of theorem 2 that ρ12, upon super-vector normalization,

has a Schmidt decomposition in terms of Hermitian operators. �
Returning to a biorthogonal mixture, one might wonder if one can continue such a

decomposition by writing each term in a Hermitian Schmidt decomposition in order to obtain
the latter decomposition for the entire statistical operator. The answer is affirmative on account
of the following.

Going back to (5), we can add a fourth equivalent property.

Proposition 1. Two statistical operators ρ ′ and ρ ′′ are orthogonal if and only if they are
orthogonal as Hilbert–Schmidt super-vectors.

Proof. It is obvious that orthogonality (in the sense of (5)) implies Hilbert–Schmidt
orthogonality. To see the converse implication, we make use of the fact that every statistical
operator has a purely discrete spectrum [9], and we decompose the statistical operators in terms
of characteristic vectors corresponding to positive characteristic values:

〈ρ ′ ||ρ ′′ 〉 = Tr ρ ′ρ ′′ = Tr
∑
k

rk|k 〉〈k |
∑
j

r̄j |j 〉〈j | =
∑
k

∑
j

rkr̄j |〈j ||k 〉|2.

Hence,

〈ρ ′ ||ρ ′′ 〉 = 0 ⇒ ρ ′ρ ′′ = 0

(cf the third relation in (5)). �
If (A1, A2) is a pair of twin observables, then the detectable parts A′

i , i = 1, 2, have a
common purely discrete spectrum {an : ∀n} (with, in general, different multiplicities), and
the corresponding (detectable) characteristic projectors {P (n)

i : i = 1, 2,∀n}, are also pairs of
twins [1].

Definition 3. If all above-mentioned characteristic projector pairs (P
(n)
1 , P

(n)
2 ) are strong

twin projectors, then (A1, A2) is a pair of strong twin observables. If some of the detectable
characteristic twin projectors are strong and some weak, we say that we have partially strong
(or, synonymously, partially weak) twin observables. If all the above-mentioned twin projectors
are weak, then we have a weak pair of twin observables.

A pair (A1, A2) of nontrivial twin observables for ρ12 is a pair of strong ones if and only
if

[Ai, ρ12] = 0 i = 1, 2 (15)

is valid. This is so because commutation with all characteristic projectors is equivalent
to commutation with the Hermitian operator itself, and, if P1 (e.g.) is a nondetectable
characteristic projector of A1, then one has commutation because

P1ρ12 = (P1Q
⊥
1 )ρ12 = 0 = ρ12(Q

⊥
1 P1) = ρ12P1

on account of (8).
Strong twin observables, by means of their strong characteristic twin projectors, lead to a

generalization of (3):

ρ12 =
∑
n

P
(n)
1 ρ12 =

∑
n

wnρ
(n)
12 (16a)

where

∀n: wn ≡ Tr ρ12P
(n)
1 ρ

(n)
12 ≡ (wn)

−1P
(n)
1 ρ12. (16b)



Hermitian Schmidt decomposition and twins of mixed states 1699

Naturally, if P (n)
1 ρ12 = 0, then ρ

(n)
12 is not defined. Any two terms in (16a) are biorthogonal.

Note that we utilize the entire characteristic projectors, which are the orthogonal sums
of the detectable and the nondetectable parts: P

(n)
1 = (P ′

1)
(n) ⊕ (P ′′

1 )
(n) paralleling H1 =

R(ρ1) ⊕ R⊥(ρ1). We can do this because (P ′
1)

(n)ρ12 = P
(n)
1 ρ12.

Proposition 2. If

ρ
(n)
1 ≡ Tr2 ρ

(n)
12

(and symmetrically for ρ(n)2 ) are the reduced statistical operators of the terms in a biorthogonal
mixture (16a), then

P
(n)
i ρ

(n)
i = ρ

(n)
i i = 1, 2 (17a)

or, equivalently,

R(ρ
(n)
i ) ⊆ R(P

(n)
i ) i = 1, 2. (17b)

Proof. On account of the definition of (16a), one has P (n)
i ρ

(n)
12 = ρ

(n)
12 . Taking the opposite-

subsystem partial trace, one obtains P (n)
i ρ

(n)
i = ρ

(n)
i i = 1, 2. �

Corollary 2. If the detectable part A′
1 of a twin observable A1 has a nondegenerate

characteristic value an corresponding to a strong characteristic twin projector (P ′
1)

(n) =
| ψ(n) 〉1〈 ψ(n) |1, | ψ(n) 〉1 ∈ R(ρ1), then the term in the biorthogonal mixture (16a) that
corresponds to it has the form

wn|ψ(n) 〉1〈ψ(n) |1 ⊗ ρ
(n)
2 (18)

where ρ(n)2 is a (second-subsystem) statistical operator and (18) is a term in a final Hermitian
Schmidt decomposition of ρ12.

Any biorthogonal decomposition of a composite-system statistical operator ρ12 (into two
or more terms) can be continued in each term separately into a Schmidt decomposition of ρ12

in terms of Hermitian operators.
The biorthogonal decomposition is an intermediate step. This is similar to the case where

we can partially diagonalize the Hamiltonian of a quantum system (due to some symmetry,
e.g.). The diagonalization is then continued separately with each submatrix on the diagonal of
the Hamiltonian.

The continuation from a biorthogonal mixture to a Hermitian Schmidt decomposition
can always be performed, in principle, ‘by brute force’: diagonalizing the reduced statistical
super-operator ρ̂1 of the normalized super-vector |ρ12 〉 (analogously to how it is done for an
ordinary state vector), and by finding an invariant basis for V (a)

1 in each characteristic subspace
thus obtained [8].

5. Weak twins and non-Hermitian Schmidt decomposition

For the sake of completeness, it is desirable to investigate decomposition (3) also for a weak
nontrivial twin projector P1. First, we take an analytical view of theorem 1 and realize that the
biorthogonality of the two terms in (3) is connected with the twin property (strong or weak),
and the strong twin property corresponds to the hermiticity of the terms. Let us put this more
precisely.
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Remark 2. A decomposition

ρ12 = A12 + B12

of a composite-system statistical operator ρ12 into two linear operators is biorthogonal if there
exist two opposite-subsystem projectors (P1, P2) such that

A12 = P1A12 = P2A12 0 = P1B12 = P2B12

0 = P⊥
1 A12 = P⊥

2 A12 B12 = P⊥
1 B12 = P⊥

2 B12.

It is clear from theorem 1 that any biorthogonal mixture (of states) (6) satisfies the condition
given in remark 2. Having in mind (3), it is also evident that biorthogonality is equivalent to
the existence of a pair of twin projectors (weak or strong). Finally, the strength property of the
twins is equivalent to the hermiticity of the terms in (3), which results in there being statistical
operator terms (and a mixture).

Theorem 3. If (P1, P2) is a pair of weak twin projectors for a composite-system statistical
operator ρ12, then the terms in (3) are super-vectors, and replacing each by a (non-Hermitian)
Schmidt decomposition, one obtains a decomposition of the same kind for the entire statistical
operator.

Proof. Since in

1 � Tr ρ2
12 = Tr ρ12P1ρ12 + Tr ρ12P

⊥
1 ρ12

the terms are non-negative (as traces of positive operators), the terms in (3) are Hilbert–Schmidt
operators, i.e., super-vectors. Suppose that we have decomposed the first term in (3) in the
Schmidt way:

P1ρ12 = c
∑
i

r
1/2
i A

(i)
1 ⊗ B

(i)
2

where c is a normalization constant (because the statistical operator is not a super-state vector
unless it is a pure state). Since the LHS is invariant under P1, so is each first-subsystem linear
operator A(i)

1 , because the second factors in the expansion have unique corresponding first
factors. If we decompose also the second term in (3) in the Schmidt way:

P⊥
1 ρ12 = c′∑

j

r
′1/2
j C

(j)

1 ⊗ D
(j)

2

then, analogously, invariance of each factorC(j)

1 underP⊥
1 follows. This results in super-vector

orthogonality:

∀i, j : Tr[(A(i)
1 )†C

(j)

1 ] = Tr[(A(i)
1 )†P1P

⊥
1 C

(j)

1 ] = 0.

A symmetrical argument applies for the second factors andP2. Thus, replacing both terms in (3)
by their non-Hermitian Schmidt decompositions, we have biorthogonality between any term
of the first decomposition and any term of the second one. Therefore, we have a decomposition
of the same kind of the whole of ρ12. �

It is now clear that in the case of weak twin projectors also the decomposition (3) can be
continued, but this time to a non-Hermitian Schmidt decomposition.

A non-Hermitian Schmidt decomposition need not be wild and far fetched from the
physical point of view. Let me illustrate this by the obvious fact that a Schmidt decomposition
of a state vector |�〉12:

|�〉12 =
∑
i

r
1/2
i |i 〉1|i 〉2 〈i |p|i ′ 〉p = δi,i ′ p = 1, 2
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immediately results in a non-Hermitian Schmidt decomposition of the statistical operator
|�〉12〈�|12:

|�〉12〈�|12 =
∑
i

∑
i ′

r
1/2
i r

1/2
i ′ |i 〉1〈i ′ |1 ⊗ |i 〉2〈i ′ |2.

Finally, let us return to separable mixtures.

6. Nontrivial twin projectors for separable mixtures

Let (9) be a general separable mixture. Let us clarify under what conditions it has nontrivial
twin events.

Theorem 4. A general separable mixture (9) has a nontrivial twin projector P1 if and only if
the set of all values of the index ‘k’ is the union of two nonoverlapping subsets, say, consisting
of ‘k′’-values and of ‘k′′’-values respectively, and, when (9) is rewritten accordingly:

ρ12 =
∑
k′

wk′ρ
(k′)
1 ⊗ ρ

(k′)
2 +

∑
k′′

wk′′ρ
(k′′)
1 ⊗ ρ

(k′′)
2 (19a)

then one has biorthogonality between the two groups of terms:

∀k′,∀k′′: ρ
(k′)
i ρ

(k′′)
i = 0 i = 1, 2. (19b)

Before we prove the theorem, we first prove subsidiary results.

Lemma 1. Let

ρ12 =
∑
m

wm|%(m) 〉12〈%(m) |12

be an arbitrary pure-state mixture. Then, a pair of subsystem observables (A1, A2) are twins
for ρ12 if and only if they are twins for all pure-state terms.

Proof. Necessity follows from the general result that all twins of ρ12 are also twins of all state
vectors from the topological closure R̄(ρ12) of the range of ρ12 (cf section 3, C1 in [1]). As is
well known, the vectors {|%(m) 〉12 : ∀m} span the above-mentioned subspace.

Sufficiency is obvious. �
Lemma 2. Let

ρ12 =
∑
k

wkρ
(k)
12

be an arbitrary mixture. The pair (A1, A2) are twin observables for ρ12 if and only if they are
twin observables for all term states ρ(k)12 .

Proof. This is immediately obtained from lemma 1 if one rewrites each term state as a pure-state
mixture. �
Lemma 3. An uncorrelated state ρ1 ⊗ ρ2 has only trivial twins.

Proof. This is an immediate consequence of the fact that the tensor factors of a nonzero
uncorrelated vector, say a ⊗ b, are unique up to an arbitrary nonzero complex number α, but
if a is replaced by αa, b must be replaced by (1/α)b.

If two observables are twins for an uncorrelated state, then

A1ρ1 ⊗ ρ2 = ρ1 ⊗ A2ρ2.

IfA1ρ1 = αρ1, then, applying the above remark to super-vectors, one has ρ2 = (1/α)A2ρ2. �
Proof of theorem 3. Now this immediately follows from lemmas 2 and 3. That is, the two
groups of terms stated in the theorem make up the two terms in (3). �
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Corollary 3. Nontrivial twin events of a separable mixture (9) are necessarily strong twin
events.

Corollary 4. If (A1, A2) are nontrivial twin observables for a separable mixture (9), they
are strong twin observables (cf definition 3), and the mixture terms can be grouped into as
many biorthogonal groups of terms as there are distinct characteristic values of A1 in R(ρ1)

(generalization of (19a), (19b)).

It is known that if a statistical operator and a Hermitian operator commute, then the
corresponding state can be written as a mixture such that each term state has a definite value
of the corresponding observable [10]. But, for the same statistical operator, there are also
mixtures violating this.

To take an example, let us think of an unpolarized mixture of spin-half states: ρ = (1/2)I
(in the two-dimensional spin factor space). This statistical operator commutes with sz;
nevertheless, one can write down the mixture

ρ = (1/2)(|x,+〉〈x,+| + |x,−〉〈x,−|) = (1/2)I

in which the term states do not have a definite value of the z-component.
It is interesting that in the case of a separable mixture with a nontrivial twin observable,

it is necessarily its term states that have the sharp detectable values of the corresponding
observable.

7. States with maximally disordered subsystems

Now we turn to the example that is, for illustrative purposes, investigated in this study,
i.e., to states (statistical operators) ρ in C

2 ⊗ C
2. We say that ρ is an MDS state (one

with maximally disordered subsystems or rather subsystem states) if ρ1 = (1/2)I1 and
ρ2 = (1/2)I2. Horodecki and Horodecki have shown [11] that for every MDS state there
exist unitary subsystem operators U1 and U2 such that

(U1 ⊗ U2)ρ(U
†
1 ⊗ U

†
2 ) = (1/4)

(
I ⊗ I +

3∑
i=1

tiσi ⊗ σi

)
≡ T (20)

where σi , i = 1, 2, 3, are the well known Pauli matrices σx, σy , and σz; and it is apparent from
their position in the expression whether they relate to the first or the second spin-half particle.

Further, they have shown that the operator T is a statistical operator (a quantum state) if
and only if the vector �t from R3 whose components appear in (20) is not outside the tetrahedron
determined as the set of all mixtures of the four pure Bell states:

|ψ1
2 〉 ≡ (1/2)1/2(|+〉|+〉 ∓ |−〉|−〉) |ψ3

0 〉 ≡ (1/2)1/2(|+〉|−〉 ± |−〉|+〉) (21)

where |+〉 and |−〉 are the spin-up and the spin-down state vectors respectively.
It is straightforward to see that the three nonsinglet Bell states |ψs 〉, s = 1, 2, 3, when

written in the form (20), are given by ts = −1, and that the other two components of �t are
equal to +1. The singlet state |ψ0 〉 is, in the form (20), determined by all three components of
�t being equal to −1.

It is also easy to see that for all mixtures one has

−1 � ti � +1 i = 1, 2, 3.

This is a necessary but not a sufficient condition for T being a state. In other words, the
tetrahedron is embedded in a cube, in which there are also nonphysical �t . In view of the LHS
of (20), we call T that belong to the tetrahedron generating MDS states.
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What we want to find out is: which of the MDS states have nontrivial twins? For those
that do have, we want to find the set of all nontrivial pairs of twins.

It is sufficient to find the generating MDS states T with nontrivial twins, because the
validity of

A1T = A2T

obviously implies

(U1A1U
†
1 )(U1U2T U

†
1U

†
2 ) = (U2A2U

†
2 )(U1U2T U

†
1U

†
2 ).

That is, if the generating MDS states have nontrivial twins, then the generated MDS states also
have nontrivial twins, and they are immediately obtained.

As far as the pure generating MDS states (the Bell states) are concerned, the first-particle
reduced statistical operator ρ1 is equal to (1/2)I1, and all nontrivial Hermitian operators A1

commute with it; hence [3], they are twins. To evaluate the corresponding twin A2, one has
to read off the antilinear correlation operator Ua from (21), having in mind (11), and then
utilize (13). For the best known Bell state, the singlet state |ψ0 〉, e.g. Ua takes |+〉 into |−〉,
and |−〉 into (−|+〉) (cf (21)). If

A1 = α++|+〉〈+| + α−−|−〉〈−| + α+−|+〉〈−| + (α+−)∗|−〉〈+|
α++, α−− ∈ R α+− ∈ C

then the twin A2 has the form:

A2 = α−−|+〉〈+| + α++|−〉〈−| − α+−|+〉〈−| − (α+−)∗|−〉〈+|.
Now we turn to the mixtures of Bell states in our search for nontrivial twins.

8. Mixtures of Bell states

Viewing statistical operators as super-vectors, and utilizing (redundantly, but for the sake
of better overview) the ket notation for super-state vectors (i.e., Hilbert–Schmidt operators
as normalized super-vectors), one can rewrite the generating vectors T given by (20) as a
biorthogonal expansion with positive expansion coefficients:

|T ‖T ‖−1 〉12 =
(

1 +
3∑

i=1

t2
i

)−1/2

(|(1/2)1/2I 〉1 ⊗ |(1/2)1/2I 〉2

+
3∑

i=1

|ti ||(1/2)1/2σi 〉1 ⊗ |sg(ti)(1/2)1/2σi 〉2) (22)

(‘sg’ denotes the sign), i.e., as a (super-state-vector) Hermitian Schmidt decomposition.
One can read off (22) the following canonical entities of the super-state vector |T ‖T ‖−1〉12

(cf (10a), (10b) and (11)).
The first-subsystem reduced statistical super-operator ρ̂1 has the characteristic super-state

vectors {| (1/2)1/2I 〉1, | (1/2)1/2σi 〉1 : i = 1, 2, 3}; the second-subsystem reduced statistical
super-operator ρ̂2 has the characteristic state vectors {|(1/2)1/2I 〉2, |sg(ti)(1/2)1/2σi 〉2 : i =
1, 2, 3}; and the common spectrum of ρ̂1 and ρ̂2 is {R0 ≡ (1 +

∑3
i=1 t

2
i )

−1, Ri ≡ R0t
2
i :

i = 1, 2, 3}. Finally, the antiunitary correlation super-operator Ûa maps the enumerated
characteristic state vectors of ρ̂1 into the correspondingly ordered ones of ρ̂2.
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9. Nontrivial MDS twins

Every super-operator Â1 that commutes with ρ̂1, i.e., for which every characteristic subspace
of the latter is invariant (and no other super-operator), has a twin super-operator Â2 [3]. But
we are interested only in those pairs (Â1, Â2) in which both super-operators are what may be
called multiplicative ones, i.e., which have the form

Â1ρ12 = A1ρ12 Â2ρ12 = A2ρ12

where Ap, p = 1, 2, are ordinary (subsystem) operators. It is easy to see that a multiplicative
super-operator is Hermitian (in the Hilbert–Schmidt space of super-vectors) if the ordinary
operator (in the usual sense) that determines it is also.

The basic result of the illustration expounded above is given in the following two theorems.

Theorem 5. Mixed generating MDS states have nontrivial twins if and only if they are mixtures
of two Bell states (binary mixtures).

Theorem 6. (A) Let us take a binary mixture of two Bell states both distinct from the singlet
one, and let Ti ≡ |ψi 〉〈ψi | (cf (21)) be the nonsinglet Bell state that does not participate in
the mixture. Then the nontrivial twins are

A1 ≡ αI1 + βσ
(1)
i A2 ≡ αI2 + βσ

(2)
i α, β ∈ R β �= 0 (23)

where the suffix on σi refers to the corresponding tensor factor space.
(B) In the case of a binary mixture of the singlet state with another Bell state, say

Ti ≡ |ψi 〉〈ψi | (cf (21)), the twins are

A1 ≡ αI1 + βσ
(1)
i A2 ≡ αI2 − βσ

(2)
i α, β ∈ R β �= 0. (24)

Proof of the two theorems and of some subsidiary results is given in the appendix. The
proof of theorem 6 that is given first in the appendix is only of methodological significance:
it illustrates a method for evaluating nontrivial twins. In our case of binary mixtures T (2),
another method gives a simpler evaluation. It is given at the end of the appendix.

It is known that any Bell state can be converted into any other one by local unitary
transformation [6,12]. Hence, to prove the existence of nontrivial twins it would have sufficed
to take mixtures of one pair of Bell states. Theorem 6 is, nevertheless, more elaborate, because
the explicit form of the twins depends on which Bell states are involved.

It is known that all binary mixtures of Bell states are nonseparable except those with
equal weights. The latter, as is easily seen, are examples of theorem 4; e.g., as one can easily
ascertain making use of (21), one has

(1/2)((|+〉〈+| ⊗ |+〉〈+|) + (|−〉〈−| ⊗ |−〉〈−|)) = (1/2)(|ψ1 〉〈ψ1 | + |ψ2 〉〈ψ2 |). (25)

The nonseparable binary Bell state mixtures are distillable even in the single-copy
case [13]. Unfortunately, there is no simple relation between the existence of nontrivial twins
(being investigated) and distillability, as can be seen from the fact that rank-four mixtures are
also distillable (if and only if one of the weights is larger than 1/2), and they do not have
nontrivial twins.

In conclusion, I would like to point out that the entangled pure-state case [3, 4] is a well
explored illustration of the fact that nontrivial twins can exist on account of entanglement.
The nonseparable binary Bell state mixtures provide another simple illustration of this fact.
One should keep it in mind that, as was seen in lemma 3, uncorrelated bipartite states do not
have nontrivial twins. Separable states can have nontrivial twins if and only if biorthogonal
grouping of the terms is possible (cf theorem 4). Unfortunately, for the time being, we do not
have a necessary and sufficient condition for the existence of nontrivial twins on account of
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entanglement (except in the pure-state case), let alone a way of generating all of them for a
given composite-system mixed state (except in the pure-state case).

Last, but not least, a relation between the reported twin investigation (see [3], [4], and [1],
in addition to this paper) and the mainstream research on entanglement (take the cited Bennett
et al articles, the article of Vedral et al and the cited Horodecki family articles as examples)
is still lacking. But I believe that there is a connection. Further research will, one hopes,
uncover it.
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Appendix

Since we are going to prove the theorems making use of (22), first we must be able to recognize
the binary mixtures T (2) on the Horodecki tetrahedron.

Proposition A.1. One has a binary mixture T (2) if and only if precisely one of the three values
of |ti | in (22) equals 1.

(A) If ti = +1, |ti+1|, |ti+2| < 1 (where the three values {1, 2, 3} of i are meant cyclically),
then the mixture is of two Bell states both distinct from the singlet state. If Ti is the nonsinglet
Bell state that does not participate in the mixture, one has ti+2 = −ti+1. Finally, the binary
mixture T (2) in question is

T (2) = [(1 − ti+1)/2]Ti+1 + [(1 − ti+2)/2]Ti+2. (A.1)

(B) If ti = −1, |ti+1|, |ti+2| < 1 (in the cyclic sense), then one deals with a mixture of two
states: the singlet state and another Bell state Ti . One has ti+1 = ti+2, and the binary mixture
T (2) in question is

T (2) = [(1 + ti+1)/2]Ti + [(1 − ti+1)/2]T0. (A.2)

Both in case (A) and in case (B), ti+1 can be any number in the interval −1 � ti+1 � +1;
equivalently, one can have any point on the corresponding border of the Horodecki tetrahedron
(the vertices excluded).

For the proof, a few subsidiary results are required.

Lemma A.1. If among the four numbers {1, |ti | : i = 1, 2, 3} appearing in the form (22) of
the generating MDS state T there is one distinct from the rest, then T has no nontrivial twins.

Proof. As clearly follows from the spectrum of ρ̂1 given above, the above-mentioned ‘one
number distinct from the rest’ corresponds to a nondegenerate characteristic value. Assuming
that A1 is a twin, it is a multiplicative super-operator reducing in each characteristic subspace
of ρ̂1. (This is equivalent to commutation with ρ̂1.)

(a) Let us take the case where |ti | < 1, i = 1, 2, 3. Then the first characteristic value of
ρ̂1 is nondegenerate, and the corresponding characteristic super-state vector has to be invariant
(up to a constant):

A1(1/2)1/2I1 = α(1/2)1/2I1

i.e., A1 = α, and the twin is trivial.
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(b) Let |ti | for some value of i be distinct from the other three numbers. Then the
corresponding characteristic super-state vector σi(1/2)1/2 must be invariant (up to a constant):

A1σi(1/2)1/2 = ασi(1/2)1/2

which, upon multiplication with σi from the right, implies A1 = α again. �

Corollary A.1. If a generating MDS state T has nontrivial twins, then for at least one value
of i, |ti | = 1.

Proof. This is obvious from lemma A.1. �

Lemma A.2. Expressing a generating MDS state T written in the form (22) in terms of the
statistical weights with respect to the Bell states {Tk ≡ |ψk 〉〈ψk | : k = 0, 1, . . . , 3} (cf (6)),
one has

T =
3∑

k=0

wkTk = (1/4)[I ⊗ I + (−w1 + w2 + w3 − w0)σ1 ⊗ σ1

+ (w1 − w2 + w3 − w0)σ2 ⊗ σ2 + (w1 + w2 − w3 − w0)σ3 ⊗ σ3] (A.3)

where

∀k: wk ∈ [0, 1] k = 0, 1, 2, 3
3∑

k=0

wk = 1.

Proof. This is straightforward, substituting the Bell states in (22) (cf (21) and beneath it). �

Lemma A.3. If one has |ti | = 1, i = 1, 2, 3, for a generating MDS state T in the form (22),
then it is a Bell state.

Proof. Each ti has two sign possibilities; altogether there are 23 = 8 possibilities. A
straightforward analysis of each of these, taking into account lemma A.2 and

∑3
k=0 wk = 1,

shows that four possibilities do not give states. These are: {sg(ti) = + : i = 1, 2, 3},
{+ −−}, {− + −}, and {−− +}. The remaining four sign possibilities give the four Bell states:

{− + +}: T1 {+ − +}: T2 {+ + −}: T3 {− − −}: T0.

�

Proof of claim (A) in proposition A.1. Since it is clear from (A.3) that the ti as functions of
wk are symmetric (in the sense of the cycle {1, 2, 3}), it is sufficient to take i = 1. Then

−w1 + w2 + w3 − w0 = 1 and
3∑

k=0

wk = 1.

This gives w2 + w3 = 1, w1 = w0 = 0, and t2 = w3 − w2 = −t3. Hence, w2 = (1 − t2)/2
and w3 = (1 + t2)/2 as claimed. Since 0 < w1, w0 < 1, the claimed intervals for t2 and t3
follow. �

Proof of claim (B) of the proposition. This runs in full analogy with the proof for case (A). �

Proof of the main claim of the proposition. It is easy to see that the proofs of claims (A)
and (B) of the proposition carry over to the case where |ti+1| or |ti+2| equals one. Hence, one
cannot have |ti | = 1 for precisely two values of i. If this is the case for one value, then either
it is so for all three values, and one has a pure Bell state, or it is so for precisely one value of
i, and then we have a binary mixture. �
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Proof of theorem 6. We now assume that for one value of i, |ti | = 1, and that the other
two components of �t in (22) have moduli less than one. Then it is sufficient and necessary
for an observable A1 that defines a super-operator Â1 by multiplication (we write this as
Â1 ≡ (A1•)) to have a super-operator twin A2 (that is not necessarily multiplicative like Â1)
to reduce in the two-dimensional super-vector subspace spanned by I1 and σ

(1)
i . If we write

A1 = αI1 +
∑3

j=1 βjσ
(1)
j (α, βj ∈ R), and multiply with this from the left by σ (1)

i , it turns out
that the condition amounts to βj = 0, j �= i. A symmetrical argument gives the symmetrical
result. Thus the multiplicative super-operators defined by A1 and, separately, by A2 have
super-operator twins if and only if they are of the form

A1 = αI1 + βσ
(1)
i A2 = γ I2 + δσ

(2)
i (A.4)

where α, β, γ, δ ∈ R.
The above-mentioned operators are twins of each other if and only if

(A2•) = Ûa(A1•)Û−1
a . (A.5)

Now we find the necessary and sufficient conditions for which (A.5) is valid for the
operators given by (A.4). Since both sides of (A.5) are linear operators, we apply them to the
basis of super-vectors {I2, σ

(2)
i : i = 1, 2, 3}:

(A2•)I2 = γ I2 + δσ
(2)
i

(Ûa(A1•)Û−1
a )I2 = Ûa(αI1 + βσ

(1)
i ) = αI2 + sg(ti)βσ

(2)
i .

Thus, we obtain the condition

γ = α δ = sg(ti)β.

Utilizing the well known relation

σiσj = δij I +
3∑

m=1

iεijmσm

we, further, have

(A2•)σ (2)
j = (γ I2 + δσ

(2)
i )σ

(2)
j = γ σ

(2)
j + δ

(
δij I2 +

∑
m

iεijmσ
(2)
m

)

(Ûa(A1•)Û−1
a )σ

(2)
j = sg(tj )Ûa(αI1 + βσ

(1)
i )σ

(1)
j

= sg(tj )Ûa

(
ασ

(1)
j + β

(
δij I1 +

∑
m

iεijmσ
(1)
m

))

= sg(tj )

(
α sg(tj )σ

(2)
j + β

(
δij I2 −

∑
m

iεijm sg(tm)σ
(2)
m

))
.

For i = j we obtain the condition γ = α, and δ = sg(ti)β, and, for j �= i, in addition,
δ = −sg(tj ) sg(tm)β. Since i �= m �= j , we know from the proposition that, irrespective of
sg(ti), one has −sg(tj ) sg(tm) = sg(ti). Hence, we actually obtain the condition expressed
by (23) and (24). �

The claim in theorem 5 that binary mixtures T (2) have nontrivial twins is an immediate
consequence of theorem 6.

The above-mentioned second, simpler, proof goes as follows: according to lemma 1, a
pair of opposite-subsystem observables (A1, A2) are twins for a composite-system mixture if
and only if they are simultaneously twins for each of the pure term states.

Utilizing (13), it is straightforward to evaluate the twins in the operator basis consisting
of the four super-vectors |±〉〈±|. But for comparison with the results (23) and (24) obtained
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by the Hermitian Schmidt decomposition method, we do this in a slightly more difficult way
using the form (22) for the Bell states (see their description beneath (22)).

We can read off the antiunitary correlation super-operator Ûa from the above-mentioned
form (22) of the Bell state. As was stated before, every first-subsystem observable A1 ≡
αI1 +

∑3
i=1 βiσ

(1)
i (α, βi ∈ R, i = 1, 2, 3) is a twin. The corresponding second-subsystem

twins for the Bell states are

T1: A2 ≡ αI2 − β1σ
(2)
1 + β2σ

(2)
2 + β3σ

(2)
3

T2: A2 ≡ αI2 + β1σ
(2)
1 − β2σ

(2)
2 + β3σ

(2)
3

T3: A2 ≡ αI2 + β1σ
(2)
1 + β2σ

(2)
2 − β3σ

(2)
3

T0: A2 ≡ αI2 − β1σ
(2)
1 − β2σ

(2)
2 − β3σ

(2)
3 .

Now, in view of the position of the minus sign in A2, evidently, utilizing m �= i �= j �= m

(i, j,m ∈ {1, 2, 3}) and 0 < w < 1, the simultaneous twins are

wTj + (1 − w)Tm: A2 ≡ α + βiσi

wT0 + (1 − w)Ti : A2 ≡ α − βiσi

and A2 is, of course, the twin of A1 ≡ α + βiσi .
In this way, proof of (23) and (24) is obtained.
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